This PhD project aims to develop site-specific strategies for climate adaptation and energy reduction in building renovations. The core objective is to create adaptive, energy-efficient renovation utilizing simulation-based techniques to predict energy use under future climate scenarios and evolving building uses. The project will also analyze these adaptation strategies from a cost and life-cycle perspective to ensure their long-term sustainability and economic viability. You will build knowledge on adaptive strategies to mitigate climate risks for the built environment, enhancing their resilience against climate change impacts. This involves evaluating the risks of climate change, understanding their interrelations with building performance, and exploring innovative renovation techniques that promote energy efficiency and sustainability.
Objectives
Methodology
The PhD project utilizes building performance simulations and multi-objective optimization to develop site-specific climate adaptation and energy reduction strategies for building renovations. Comprehensive climate risk assessments and energy use evaluations are conducted using high-resolution climate data and building-specific information. Advanced simulations predict energy use under future climate scenarios and changing building uses, incorporating factors like temperature, precipitation, and extreme weather events.
Validated simulation models, refined through empirical data, are used to test adaptation and energy reduction strategies. Multi-objective optimization techniques identify solutions that balance energy efficiency, comfort, and livability. Cost-benefit and life-cycle analyses assess various materials and techniques' economic and environmental impacts, providing insights into their sustainability and cost-effectiveness.
Interdisciplinary collaboration with experts in climate science, engineering, architecture, and economics ensures a holistic approach. Ethical standards and sustainability are prioritized, considering the proposed strategies' social, economic, and environmental impacts. This methodology aims to develop practical, flexible, adaptable solutions for enhancing building resilience and energy efficiency.
Responsibilities and qualifications
Your tasks will include researching novel methods for representing and maintaining building data to enable multiple urgent agendas in the building industry, specifically to create safer, less costly, and more sustainable buildings. You will focus on the following areas:
Cost and Life-cycle Analysis
Your general responsibilities are:
You must have a two-year master's degree (120 ECTS points) or a similar degree with an academic level equivalent to a two-year master's degree.
Approval and Enrolment
The scholarship for the PhD degree is subject to academic approval, and the candidate will be enrolled in one of the general degree programmes at DTU. For information about our enrolment requirements and the general planning of the PhD study programme, please see DTU's rules for the PhD education
.
Assessment
The assessment of the applications will be made by Associate Professor Rongling Li and Associate Professor Kristoffer Negendahl at DTU Construct.
We offer
an opportunity to develop expertise in various domains, such as advanced building physics simulation techniques, machine learning approaches, statistical modeling, optimization, high-performance computing, and Building Information Modelling.
DTU is a leading technical university globally recognized for the excellence of its research, education, innovation and scientific advice. We offer a rewarding and challenging job in an international environment. We strive for academic excellence in an environment characterized by collegial respect and academic freedom tempered by responsibility.
Salary and appointment terms
The appointment will be based on the collective agreement with the Danish Confederation of Professional Associations. The allowance will be agreed upon with the relevant union.
The period of employment is 3 years. Expected starting date: 1 November 2024 or a mutual agreement soon after. The position is a full-time position.
You can read more about career paths at DTU here
.
Further information
Further information may be obtained from Prof. Rongling Li
([email protected]
).
You can read more about DTU Construct at https://construct.dtu.dk
.
If you are applying from abroad, you may find useful information on working in Denmark and at DTU at DTU – Moving to Denmark
. Furthermore, you have the option of joining our monthly free seminar “PhD relocation to Denmark and startup “Zoom” seminar
” for all questions regarding the practical matters of moving to Denmark and working as a PhD at DTU.
Application procedure
Your complete online application must be submitted no later than 17 September 2024 (23:59 Danish time)
. Applications must be submitted as one PDF file
containing all materials to be given consideration. To apply, please open the link "Apply now", fill out the online application form, and attach all your materials in English in one PDF file
. The file must include:
You may apply prior to obtaining your master's degree but cannot begin before having received it.
Applications received after the deadline will not be considered.
All interested candidates irrespective of age, gender, race, disability, religion or ethnic background are encouraged to apply.
DTU Civil and Mechanical Engineering (DTU Construct) develops and utilises science and technical knowledge for the benefit of society and the sustainable development. We undertake research, education, innovation, and scientific advice of the highest quality within building design and processes, building construction and safety, building energy and services, solid mechanics, fluid mechanics, materials technology, manufacturing engineering, engineering design and thermal energy systems.
Technology for people
DTU develops technology for people. With our international elite research and study programmes, we are helping to create a better world and to solve the global challenges formulated in the UN’s 17 Sustainable Development Goals. Hans Christian Ørsted founded DTU in 1829 with a clear mission to develop and create value using science and engineering to benefit society. That mission lives on today. DTU has 13,500 students and 6,000 employees. We work in an international atmosphere and have an inclusive, evolving, and informal working environment. DTU has campuses in all parts of Denmark and in Greenland, and we collaborate with the best universities around the world.
Husk at skrive i din ansøgning, at du så jobbet hos Ofir